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Introduction to Post’s Correspondence Problem (PCP): 
- Let Г be an alphabet such that |Г| ≥ 2. 
- We are given a finite sequence of pairs of strings over Г. 

I.e. (X1, Y1), (X2, Y2), …, (Xk, Yk) where (Xi, Yi) ∈ Г*. 
- Question: Is there a finite sequence i1, i2, …, it ∈ {1, …, k} s.t. Xi1Xi2...Xim = Yi1Yi2...Yim? 
- Note: I1, I2, …, Im does not need to contain all indices and may contain some repeatedly. 
- Example 1: Let Г = {0,1} and k = 4. 

i Xi Yi 

1 11 111 

2 101 0 

3 10 01 

4 0 01 

 
This instance has a solution to the problem. 
 
Consider the sequence 1, 2, 1. 
X1X2X1 = 1110111 
Y1Y2Y1 = 1110111 
X1X2X1 = Y1Y2Y1 
This is a solution to the problem. 
 
Note: Solutions are not necessarily unique. Furthermore, you can have multiple 
solutions. You can take multiple repetitions of 1 sequence that gives a solution, and they 
would all be solutions. 
I.e. Since 1,2,1 is a solution, then 1,2,1,1,2,1 is also a solution, and so on. 
 
Note: The sequence 4, 2, 1, is also a solution to the problem. 
X4X2X1 = 010111 
Y4Y2Y1 = 010111 
X4X2X1 = Y4Y2Y1 
 
Note: The sequence 1, 3, 2, 1 is also a solution to the problem. 
X1X3X2X1 = 111010111 
Y1Y3Y2Y1 = 111010111 
X1X3X2X1 = Y1Y3Y2Y1 
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- Example 2: Let Г = {0,1} and k = 4. 

i Xi Yi 

1 11 111 

2 101 1 

3 10 01 

4 0 01 

 
This instance does not have a solution to the problem. 
 
Proof: 
First, we can never use the row i = 2. This is because when i = 1, 3, or 5, Xi and Yi have 
the same number of 0’s whereas in i = 2, Xi and Yi have a different number of 0’s. X2 
has one more 0 than Y2. Hence, we can never get the same string if we use i = 2. 
 
Second, by similar reasoning, we can never use the rows i = 1 and i = 4. For i = 1, Y1 
has one more 1 than X1. For i = 4, Y4 has one more 1 than X1. Hence, we can never get 
the same string if we use either of i = 1 or i = 4. 
 
Lastly, while the row i = 3 has the same number of 0’s and 1’s for X3 and Y3, their order 
is wrong. Hence, we can never get the same string if we use i = 3. 

- Theorem 5.7: PCP is recognizable but not decidable. 
 
Proof that PCP is not decidable: 
We will prove that PCP is not decidable in 2 stages: 

1. First, we will modify PCP. The modified version of PCP will be called MPCP. 
MPCP is the same as PCP except with the requirement that i1 = 1. 
I.e. Question: Is there a finite sequence i1, i2, …, it ∈ {1, …, k} s.t. Xi1Xi2...Xim = 
Yi1Yi2...Yim and i1 = 1? 
We will first prove that U ≤m MPCP. 

2. We will then prove that MPCP ≤m PCP. 
 
Proof of 1: 
Given ⟨M, x⟩ to U, construct an instance P of MPCP, s.t. M accepts x iff P has an MPCP 
solution. 
Recall that an instance of PCP/MPCP is a finite sequence of pairs of strings over Г. 
I.e. (X1, Y1), (X2, Y2), …, (Xk, Yk) where (Xi, Yi) ∈ Г*. 
A partial solution to P is a sequence 1, i2, …, im s.t. X1Xi2...Xim is a prefix of Y1Yi2...Yim. 
X1Xi2...Xim is referred to as the top string. 
Y1Yi2...Yim is referred to as the bottom string. 
Intuitively: In a partial solution, the top and bottom strings will be sequences of 
configurations of computations of TM M on x where the configurations are separated by 
a special symbol, #. 
I.e. The configurations will look like this: #C0#C1#... 
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C0 = Q0x 

Furthermore, Ci Ci+1. 
I.e. We can go from Ci to Ci+1 in 1 move. 
Furthermore, the top string is going to be 1 configuration behind the bottom string until 
and if we reach the accept state, Qa. 
So, the partial solutions will look something like this: 
Top String: #C0#C1#...#Ct-1# 
Bottom String: #C0#C1#...#Ct-1#Ct# 
Here, Ct is the accept state. 
 
Lastly, If and when the bottom string finally reaches Qa, the top string will be allowed to 
catch up with the bottom string. 
 
I will put pairs of strings in our instance of MPCP that will achieve the intuition behind the 
construction. These pairs of strings will be grouped and each group has a particular job. 
 
Group 1: 
Is the first pair and is (#, #Q0x#). 
The y value is the initial configuration of TM M on input x. 
Top String: # 
Bottom String: #Q0x# 
 
Group 2: 
Is the second pair and will simultaneously copy portions of the last configuration in the 
bottom string to both the top and bottom strings. 
Called “Copy Pairs”. 
It needs (a, a), a ∈ Γ, and (#, #). 
To understand what group 2 does, suppose I have a partial solution: 

 
The items in the rectangles are the same, and the bottom string has the extra 
configuration abcQabd#. Note that the Qa doesn’t mean the accept state in this case; it’s 
just the state Q and the symbol a. 
Now, we will copy parts of the configuration, ab bd#, to the top string and the bottom 
string simultaneously. The reason that we can’t copy the entire configuration, specifically 
the state and the symbol(s) surrounding it, is because the state could change the symbol 
and then it will move left/right. 
I.e. In this case, we can’t copy cQa because the symbol a might get changed and then 
the state will move left/right. All other parts of the configuration can be copied as is. 
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If the state doesn’t change symbol a and just moves left/right, here’s what will happen: 
Move Left: cQa → Qca 
Move Right: cQa → caQ 
 
Group 3: 
This group is used to copy the state and the symbol(s) surrounding it to the top and 
bottom strings. 
 
∀ a, a’, b ∈ Γ 
 
This case is for if we’re moving right and the symbol after the the state is not #. 
It needs (qa, bp) if δ(q, a) = (p, b, R). 
I.e. If we’re at state q and reading symbol a, then change the a to b, go to state p and 
move 1 cell right. 
I.e. xqay → xbpy 

 
This case is for if we’re moving right and the symbol after the the state is a #. 
It needs (q#, bp#) if δ(q, ப) = (p, b, R). 
I.e. If we’re at state q and the next symbol is the blank symbol, change it to b, go to state 
p and move right. 
 
This case is for if we’re moving left and the symbol before the state is not #. 
It needs (a’qa, pa’b) if δ(q, a) = (p, b, L). 
I.e. If we’re at state q and reading symbol a, then change the a to b, go to state p and 
move 1 cell left. 
I.e. x’a’qay → x’pa’by 
 
This case is for if we’re moving left and the symbol before the state is a #. 
It needs (#qa, #pb) if δ(q, a) = (p, b, L). 
I.e. If we’re at state q and reading symbol a, then change the a to b and go to state p. 
Since the state is at the leftmost position, it can’t go left, so we don’t move. 
 
This case is for if we’re moving left and the symbol after the the state is a # and we’re 
replacing ப with a non-blank symbol. 
It needs (a’q#, pa’b#) if δ(q, ப) = (p, b, L). 
I.e. If we’re at state q and the next symbol is the blank symbol, change it to b, go to state 
p and move left. 
Note: b is not the blank symbol. I.e. b ≠ ப. 
 
This case is for if we’re moving left and the symbol after the the state is a # and we’re 
not replacing ப. However, the symbol preceding the state is not a blank symbol. 
It needs (a’q#, pa’#) if δ(q, ப) = (p, b, L). 
I.e. If we’re at state q and the next symbol is the blank symbol, change it to b, go to state 
p and move left. 
Note: b is the blank symbol. I.e. b = ப. 
Note: a’ is not the blank symbol. I.e. a’ ≠ ப. 
 
  



CSCC63 Week 6 Notes 
5 

This case is for if we’re moving left and the symbol after the the state is a # and we’re 
not replacing ப. However, the symbol preceding the state is a blank symbol. 
It needs (a’q#, p#) if δ(q, ப) = (p, ப, L). 
I.e. If we’re at state q and the next symbol is the blank symbol go to state p and move 
left. We don’t change the blank symbol. 
Note: b is the blank symbol. I.e. b = ப. 
Note: a’ is the blank symbol. I.e. a’ = ப. 
 
Group 4: 
Allows the top string to catch up to the bottom string once the bottom string reaches the 
accept state, Qa. 
Called “Catching Up Pairs” 
(aQa, Qa) 

(Qaa, Qa) 
∀ a ∈ Γ 
 
Here’s what the catching up pairs does: 
Given: 
Top String: #C0#C1#...#Cl-1 
Bottom String: #C0#C1#...#Cl-1#Cl# where Cl is in the accept state. 
 
Suppose that Cl = #abQacd# 
 
I.e. We have 
Top String: …# 
Bottom String: …#abQacd 
 
Step 1: 
We will use group 2 to copy a to both the top and bottom strings. 
Top String: …#a 
Bottom String: …#abQacd#a 
 
Step 2: 
We will use group 4 to copy bQa to the top string and Qa to the bottom string. 
Top String: …#abQa 
Bottom String: …#abQacd#aQa 
 
Step 3: 
We will use group 2 to copy c to the top and bottom strings. 
Top String: …#abQac 
Bottom String: …#abQacd#aQac 
 
Step 4: 
We will use group 2 to copy d to the top and bottom strings. 
Top String: …#abQacd 
Bottom String: …#abQacd#aQacd 
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Step 5: 
We will use group 2 to copy # to the top and bottom strings. 
Top String: …#abQacd# 
Bottom String: …#abQacd#aQacd# 
 
Step 6: 
We will use group 4 to copy aQa to the top string and Qa to the bottom string. 
Top String: …#abQacd#aQa 
Bottom String: …#abQacd#aQacd#Qa 
 
Step 7: 
We will use group 2 to copy c to the top and bottom strings. 
Top String: …#abQacd#aQac 
Bottom String: …#abQacd#aQacd#Qac 
 
Step 8: 
We will use group 2 to copy d to the top and bottom strings. 
Top String: …#abQacd#aQacd 
Bottom String: …#abQacd#aQacd#Qacd 
 
Step 9: 
We will use group 2 to copy # to the top and bottom strings. 
Top String: …#abQacd#aQacd# 
Bottom String: …#abQacd#aQacd#Qacd# 
 
Step 10: 
We will use group 4 to copy Qac to the top string and Qa to the bottom string. 
Top String: …#abQacd#aQacd#Qac 
Bottom String: …#abQacd#aQacd#Qacd#Qa 
 
Step 11: 
We will use group 2 to copy d to the top and bottom strings. 
Top String: …#abQacd#aQacd#Qacd 
Bottom String: …#abQacd#aQacd#Qacd#Qad 
 
Step 12: 
We will use group 2 to copy # to the top and bottom strings. 
Top String: …#abQacd#aQacd#Qacd# 
Bottom String: …#abQacd#aQacd#Qacd#Qad# 
 
Step 13: 
We will use group 4 to copy Qad to the top string and Qa to the bottom string. 
Top String: …#abQacd#aQacd#Qacd#Qad 
Bottom String: …#abQacd#aQacd#Qacd#Qad#Qa 
 
  



CSCC63 Week 6 Notes 
7 

Step 14: 
We will use group 2 to copy # to the top and bottom strings. 
Top String: …#abQacd#aQacd#Qacd#Qad# 
Bottom String: …#abQacd#aQacd#Qacd#Qad#Qa# 
 
Step 15: 
We will use group 5 to copy Qa## to the top string and # to the bottom string. 
Top String: …#abQacd#aQacd#Qacd#Qad#Qa## 
Bottom String: …#abQacd#aQacd#Qacd#Qad#Qa## 
 
Group 5: 
Completes the matching. 
(Qa##,#) 
 
Now, we need to verify that M accepts x iff P has an MPCP solution. 
(=>) 
If M accepts x 
→ There is an accepting sequence of configurations: 

     C0 C1 C2 ... Cl 
     where C0 is the initial configuration and Cl is the accepting configuration. 
→ Can find a solution to MPCP where the top and bottom strings are the same and look 
     like: #C0#C1#...#Cl#...#Qa#. 
     From #C0#C1#...#Cl#, we were using pairs in groups 1 - 3. 
     Afterwards, we were using pairs in groups 2, 4 & 5 
 
(<=) 
If an MPCP solution to P exists, the string corresponding to the solution must: 

- Start with #Q0x#. This is because Group 1 puts that at the bottom. 
- End with Qa##. This is because if it doesn’t end with Qa##, the top string will 

have 1 less # than the bottom string. This is because the top string starts with 1 
less # than the bottom string and every other time, the top string and bottom 
string has an equal number of #’s. 

→ Use induction to prove an invariant: 
1. The top and bottom strings in any proper partial solution have the form 

Top: #C0#C1#C2#...#C’t-1 
Bottom: #C0#C1#C2#...#Ct-1#C’t 
where C0, C1, …, Ct-1 are configurations of M and C’t is a prefix of a 
configuration of M. C’t-1 is a prefix of Ct-1. 

2. If the state in Ct-1 is not the accepting state, then C’t is a prefix of the 

configuration Ct s.t. Ct-1 Ct. 
3. If the state in Ct-1 is the accepting state, then the state in C’t, if there is one, is 

also the accepting state. 
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→ The invariant implies that the string that corresponds to a solution to P is of the form 
     #C0#C1#C2#...#Cl#...#Qa##, where Cl is the first configuration with an accept state 

     and ∀ Ci Ci+1, 0 ≤ i ≤ l. 
→ M accepts x. 
 
Proof of 2: 
Given an instance P of MPCP, construct an instance P@ of PCP s.t. P has an MPCP 
solution iff P@ has a PCP solution. 
 
Recall that an instance of PCP/MPCP is a finite sequence of pairs of strings over Г. 
I.e. (X1, Y1), (X2, Y2), …, (Xk, Yk) where (Xi, Yi) ∈ Г*. 
 
Let @, $ ∉ Г and @ ≠ $. 
Given Z = a1a2...an, we define 2 strings, z@ and @z. 
z@ = a1@a2@...an@ and @z = @a1@a2…@an 
 
For each pair (Xi, Yi) in P,  we will define Vi = Xi@ and Wi = @Yi in P@.  
We will also add a 0th row in P@, where V0 = @V1 and W0 = W1 and a row at the end in 
P@, Vk+1 and Wk+1, where Vk+1 = $ and Wk+1 = @$. 
 
Recall Example 1: Let Г = {0,1} and k = 4. This will be our P. 

i Xi Yi 

1 11 111 

2 101 0 

3 10 01 

4 0 01 

Note that the sequence 1, 2, 1 was a solution to it. Hence, this is an instance of MPCP. 
 
This will be our P@. 

i Vi Wi 

0 @1@1@ @1@1@1 

1 1@1@ @1@1@1 

2 1@0@1@ @0 

3 1@0@ @0@1 

4 0@ @0@1 

5 $ @$ 
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Note that any matching you hope to achieve will have to start with V0 and W0. 
Otherwise, the first symbol will always be different. 
 
Similarly, any matching you hope to achieve will have to start with V5 and W5. 
Otherwise, the last symbol will always be different.  
 
If P has k pairs, then P@ has k+2 pairs. The two pairs are (V0, W0) and (Vk+1, Wk+1). 

 
P has an MPCP solution iff P@ has a PCP solution. 
(=>) 
If P has an MPCP solution, then P@ has a PCP solution. 
Suppose that 1, i2, i3, …, im is a MPCP solution to P.  
Claim: 0, i2, i3, im, ik+1 is a PCP solution to P@. 
Since 1, i2, i3, …, im is a MPCP solution to P, then X1Xi2Xi3...Xim = Y1Yi2Yi3...Yim. 
Furthermore, V1Vi2Vi3...Vim is almost the same as W1Wi2Wi3...Wim.  
The differences are that the strings with Vi have a @ at the end and the strings with Wi 
have a @ at the beginning.  
To make them equal, simply put a @ in the beginning of V1Vi2Vi3...Vim and a @ at the 
end of W1Wi2Wi3...Wim.  
Now, @V1Vi2Vi3...Vim = W1Wi2Wi3...Wim@.  
Recall that @V1 = V0, W1 = W0.  
Furthermore, if we add a $ to the end of the strings with Vi and Wi, we get 
@V1Vi2Vi3...Vim$ and W1Wi2Wi3...Wim@$. Recall that $ = Vk+1 and @$ = Wk+1. 
Furthermore, @V1Vi2Vi3...Vim$ = W1Wi2Wi3...Wim@$. 
Hence, we can substitute @V1 for V0, $ for Vk+1, W1 for W0 and @$ for Wk+1. 
Now, we have V0Vi2...Vik+1 = W0W2...Wk+1.  
Hence, 0, i2, i3, im, ik+1 is a PCP solution to P@. 
 
(<=) 
If P@ has a PCP solution, then P has an MPCP solution. 
Suppose i1, i2, …, im, im+1 is a PCP solution to P@.  
It is obvious that i1 has to be 0 because otherwise, the two strings will start with different 
symbols.  
0 is the only row where Vi and Wi start with the same symbol. 
Similarly, im+1 has to be k+1. 
k+1 is the only row where Vi and Wi end with the same symbol. 
So, 0, i2, …, im+1, k+1 is a PCP solution to P@. 
This means that V0Vi2Vi3...VimVk+1 = W0Wi2Wi3...WimWk+1. 
Recall that V0 = @V1, W0 = W1, Vk+1 = $ and Wk+1 = @$. 
If we drop all the @ and $ from Vi and Wi, we get back X1X2...Xim and Y1Y2...Yim. 
X1X2...Xim = Y1Y2...Yim. 
Therefore, 1, i2, …, im, is an MPCP solution to P. 


